Honeywell Turbo Technologies

Rob Gillette
President and CEO
Transportation Systems
These materials contain certain statements that may be deemed “forward-looking statements” within the meaning of Section 21E of the Securities Exchange Act of 1934. All statements, other than statements of historical fact, that address activities, events or developments that we or our management intends, expects, projects, believes or anticipates will or may occur in the future are forward-looking statements. Such statements are based upon certain assumptions and assessments made by our management in light of their experience and their perception of historical trends, current conditions, expected future developments and other factors they believe to be appropriate. The forward-looking statements included in these materials are also subject to a number of material risks and uncertainties, including but not limited to economic, competitive, governmental, and technological factors affecting our operations, markets, products, services and prices. Such forward-looking statements are not guarantees of future performance, and actual results, developments and business decisions may differ from those envisaged by such forward-looking statements.
Today’s Review

- Transportation Systems
- Turbo Technologies Overview
- Ride & Drive Preview
- Ride & Drive
Honeywell Today

- 108,000 employees in nearly 100 countries
- A *Fortune* 60 company – $25 billion in sales
- One of 30 select companies in the DJIA
Transportation Systems

Profile

| 2004E Revenue: $4.2 - 4.3B | 13 - 14% Op. Margin |

Strengths

- Turbo Technology
- Global Presence
- Strong Brands
- Installed Base

Turbo Technologies

- 51%

Consumer Products Group

- 28%

Friction Materials

- 21%

Strong Growth Driven By Turbo Technology
Turbo Technologies

Sales by Region
- Europe: 64%
- Americas: 22%
- Asia: 12%

Sales by Segment
- Passenger Vehicles: 67%
- Comm’l Diesel: 33%

$2.4 billion in sales (est 2004)
- Leader in technology and innovation
- Aerospace heritage and synergy

Global Leader in Engine Boosting
What is Turbocharging?

- Turbine driven compressor
- Propelled by engine exhaust gas
- Increases air flow and density

Increases Power Density
Boosting Opportunity

Turbocharged Segment

<table>
<thead>
<tr>
<th>Year</th>
<th>Millions</th>
<th>10% CAGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>'04</td>
<td>15.5</td>
<td>15.5</td>
</tr>
<tr>
<td>'09</td>
<td>24.7</td>
<td>24.7</td>
</tr>
</tbody>
</table>

Overall Auto Market

<table>
<thead>
<tr>
<th>Year</th>
<th>Millions</th>
<th>2.5% CAGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>'04</td>
<td>63.5</td>
<td>63.5</td>
</tr>
<tr>
<td>'09</td>
<td>71.8</td>
<td>71.8</td>
</tr>
</tbody>
</table>

Source: Power System Research

Boosted/Non-Boosted Vehicles

<table>
<thead>
<tr>
<th>Company</th>
<th>Volumes (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMW</td>
<td></td>
</tr>
<tr>
<td>Hyundai</td>
<td></td>
</tr>
<tr>
<td>Peugeot</td>
<td></td>
</tr>
<tr>
<td>DaimlerChrysler</td>
<td></td>
</tr>
<tr>
<td>Volkswagen</td>
<td></td>
</tr>
<tr>
<td>Renault-Nissan</td>
<td></td>
</tr>
<tr>
<td>Toyota</td>
<td></td>
</tr>
<tr>
<td>Ford</td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td></td>
</tr>
</tbody>
</table>

Comm’l Vehicles

<table>
<thead>
<tr>
<th>Volumes (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

Source: Power System Research

Untapped Opportunity for Turbocharging
Turbo Applications

• Heavy Duty
• Light Trucks
• Passenger Cars

Fuel Economy, Emissions and Performance
Why Turbocharge?
Turbo Benefits

Turbo Diesel
Great driving experience with 30 - 50% better mileage than gasoline vehicles

Turbo Gasoline
10 - 20% better mileage compared to non-boosted engines with equal or better performance

Performance and Fuel Economy
Turbo Benefits - A Comparison

European VW Golf

Acceleration
0-60 miles in seconds

<table>
<thead>
<tr>
<th>Engine Type</th>
<th>0-60 mph (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3L I5</td>
<td>8.8</td>
</tr>
<tr>
<td>1.8T</td>
<td>7.2</td>
</tr>
<tr>
<td>1.9TDI</td>
<td>8.6</td>
</tr>
<tr>
<td>2.0</td>
<td>10.6</td>
</tr>
</tbody>
</table>

Fuel Consumption
(city 45%, highway 55%)

<table>
<thead>
<tr>
<th>Engine Type</th>
<th>MPG (City)</th>
<th>MPG (Highway)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3L I5</td>
<td>25.7</td>
<td>28.3</td>
</tr>
<tr>
<td>1.8T</td>
<td>28.3</td>
<td>45.9</td>
</tr>
<tr>
<td>1.9TDI</td>
<td>45.9</td>
<td>26.4</td>
</tr>
<tr>
<td>2.0</td>
<td>26.4</td>
<td>26.4</td>
</tr>
</tbody>
</table>

Source: Auto Motor und Sport; Car and Driver

Fun to Drive and Fuel Efficient
Turbo Benefits - “The Turbo Effect”

Turbo Diesel

<table>
<thead>
<tr>
<th>Engine</th>
<th>HP</th>
<th>0-60</th>
<th>Fuel Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VW Golf</td>
<td>150</td>
<td>8.8 sec</td>
<td>18/32</td>
</tr>
<tr>
<td>2.3L I5 Gas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VW Golf</td>
<td>150</td>
<td>8.6 sec</td>
<td>33/54</td>
</tr>
<tr>
<td>1.9L I4 TDI</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“Turbo Effect”

<table>
<thead>
<tr>
<th>Engine</th>
<th>HP</th>
<th>0-60</th>
<th>Fuel Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Turbo Effect”</td>
<td></td>
<td>.2 sec</td>
<td>+83% / +69%</td>
</tr>
</tbody>
</table>

Turbo Gasoline

<table>
<thead>
<tr>
<th>Engine</th>
<th>HP</th>
<th>Torque</th>
<th>Fuel Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMW 325</td>
<td>184</td>
<td>175</td>
<td>19/27</td>
</tr>
<tr>
<td>2.8L NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saab 9.3</td>
<td>205</td>
<td>209</td>
<td>23/33</td>
</tr>
<tr>
<td>2 L Turbo</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“Turbo Effect”

<table>
<thead>
<tr>
<th>Engine</th>
<th>HP</th>
<th>Torque</th>
<th>Fuel Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Turbo Effect”</td>
<td></td>
<td>+11%</td>
<td>+19%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+21%</td>
<td>+22%</td>
</tr>
</tbody>
</table>

Source: VW

Turbochargers Enable Performance and Fuel Economy
Why Now?
Legislation Converging

European CO₂ Reduction Objectives

- 165 g/km in 2002
- 140 g/km in 2008 (-15%)
- 120 g/km in 2012 (-27%)

NOx & Particulates

- **Japan**
 - Japan 2000
 - Japan 2005

- **Europe**
 - Euro II (1996)
 - Euro III (2001)
 - Euro IV (2005)
 - Euro V (2010)

- **US**
 - Tier I (1994)
 - Tier II (2004)
 - Tier III (2007)

Increasing Requirement For Clean Technologies
Global Engine Downsizing Trend

WW Average (Passenger Car and Light Truck)

- **Average engine size decreases globally (except in the US)**
- **Average engine Hp increases**
- **Increased engine power density in Europe and Asia**

Average Displacement
- Europe: 1.9L
- Asia: 1.8L
- US: 3.6L

Average Horsepower
- Europe: 72Hp/L
- Asia: 71Hp/L
- US: 58Hp/L

Boosting / Turbo is a Key Enabler
Diesel - Our Foundation for Growth

Diesel Penetration Over 20 Years

Europe: 56%
Korea: 62%
China: 22%
US: 7%

VNT™ for Passenger Car
AVNT™ for light and medium duty trucks
Double Axle VNT™ for heavy duty trucks

Latest Generation Debuted in 2005 BMW 120D

Diesel Penetration Continues to Increase Worldwide
Modern Clean Diesel

Before

New technologies
- Common rail fuel injection, Variable injection timing, VNT™ technology

Polluting, dirty
- Particulate matter (PM)
- Nitrogen dioxides (NOx)
- Sulfur fuel

Consumer rejection
- Bad impression
- Unsatisfactory performance

Now

New technologies
- 83% PM reduction since 1988
- 63% NOx reduction since 1988
- Ultra low sulfur fuel available in 2006

Increasing consumer acceptance
- Superior performance and no turbo lag
- 1/3 of Americans would consider purchasing a clean diesel vehicle*

* J.D Powers & Associates

New Diesel Technology Drives Consumer Acceptance

Scottsdale, AZ Dec. 2004
North America Heavy Duty Truck Segment

- Strong growth driven by economic recovery
- Variable geometry needed to meet US emissions requirements
- “Pre-buy” cycle boosts shipments through 2006

Technology and Strong Market Drive Growth
US Dieselization

- Ability to charge a premium in premium car and light truck/SUV
- Real world fuel economy meets expectations
- Efficiency without compromising performance
- Torque benefit for larger vehicles
- Strong vehicle residual values

Diesel Now Associated with Ultimate Driveability
Gasoline - Growing Interest Worldwide

Technology Breakthrough will Lift Gas Turbo Adoption

Global Turbo Gasoline Segment

- 8M Turbo (20% of gas engines)
- 5M Turbo (12% of gas engines)
- 3.4M Turbo
- 1.6M Turbo

Source: PRI, PSR, Martec

Future Direction

Wastegate

Variable Geometry
Asia Growth

Overall Boosting Demand
(Units)

<table>
<thead>
<tr>
<th>Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>3.3M</td>
</tr>
<tr>
<td>2008</td>
<td>6M</td>
</tr>
</tbody>
</table>

CAGR 13%

Honeywell Turbo Forecast
(Units)

<table>
<thead>
<tr>
<th>Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>1.3M</td>
</tr>
<tr>
<td>2008</td>
<td>3M</td>
</tr>
</tbody>
</table>

CAGR 18%

China
- Light duty truck growth
- Adoption of Euro II standards
- Fuel consumption regulations to be increased 15% by 2010

Japan
- Strong overseas growth in diesel
- Gasoline boosting opportunity driven by CO₂ regs beyond ‘08
- New long-term emission standard from 2H/05

Korea
- Continued increase in passenger car diesel adoption
- Tax incentives fuel diesel growth

Diesel Adoption, Emissions Drive Growth
India

Turbodiesel Vehicle Production

<table>
<thead>
<tr>
<th>Year</th>
<th>Light Vehicles</th>
<th>Commercial Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>143K</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>501K</td>
<td></td>
</tr>
</tbody>
</table>

03-08 CAGR 28%

Honeywell Turbo in India

- Business won with Tata and Mahindra
- Developing facility in Pune
- 300K unit volume opportunity

- Favorable fuel price differential
- 2005 Euro III implementation
- Focus on export market
- Euro IV favors VNT technology

Fast Growing Diesel Segment
Why Honeywell?
Technology Evolution

Step Change: Turbine Side

Step Change: Compressor Side

2-Stage Turbos

Variable Geometry Compressor Turbos

e-Turbo™ Electrically Assisted Turbo

Step Change: Control and Response

Performance

2004

2008

Wastegate

VNT™ Variable Nozzle Turbine

Step 1

Step 2

Step 3

Entering Market

Robust Technology Roadmap
Latest Generation VNT

- Improved power
- Lower fuel consumption and emissions
- Higher torque and improved transient response
- Improved braking power

Continued Improvement of Groundbreaking Technology
Two-Stage Turbo

- Employs twin turbos to boost low- and high-end performance
- Significantly increases power density of engine
- Higher power, transient response

Increasing Performance Through Staged Boosting
Variable Geometry Compressor

- Applies variable geometry to compressor side of turbo
- Wider flow range increases efficiencies
- Can be used on full engine range

Moving From Turbine to Compressor Side
Electric Boosting

- Employs electric motor to eliminate turbo lag
- Full integration with engine management system
- Complements hybrid engines and fuel cells

Provides “Boost on Demand”
Hybrid Technology

• Fuel-economy most pronounced during stop/start driving

• Variety of hybrids exist; all rely on internal combustion engine
 — Most fuel efficient version would be turbodiesel-hybrid

• Niche vehicle or mainstream technology?
 — Hybrid penetration in Japan less than 5% after many years
 — Cost/benefits analysis on hybrids vs turbodiesel still unclear
 — Mature adoption of turbodiesel to limit European penetration

Hybrid Cost/Benefits Unclear
Diesel versus Hybrid

Escape Hybrid vs. Jeep Liberty Diesel

- **Price ($000s)**
 - Escape Hybrid: TD
 - Jeep Liberty Diesel: H
 - Range: 20 to 30

- **0-60 mph (seconds)**
 - Escape Hybrid: 8
 - Jeep Liberty Diesel: 12

- **Towing Capacity (lbs.)**
 - Escape Hybrid: TD
 - Jeep Liberty Diesel: H
 - Range: 1000 to 5000

- **City Fuel Economy (US mpg)**
 - Escape Hybrid: TD
 - Jeep Liberty Diesel: H
 - Range: 20 to 40

- **Highway Fuel Economy (US mpg)**
 - Escape Hybrid: TD
 - Jeep Liberty Diesel: H
 - Range: 20 to 40

Source: Corporate Information, Car & Driver, AutoSite, Wards Communications

Diesel Offers Superior Value for LT/SUV
Honeywell Competitive Advantage

People/Expertise

• Aerodynamics
• Mechanical wheel design (HCF, optimization)
• Reliability build up
• Cooling optimization/material

Technology

• Air bearings
• High temperature alloys
• Coatings
• Assembly/welding

Markets

• Automotive controls
• Electronics
• Power generation

Honeywell Technology Applied to Turbo
Global Footprint

Broad and Diverse Resources
Turbo Productivity Engine

- Manufacturing/supply base transitioning to emerging regions
 - Most incremental new volume in Bucharest, Mexicali and Shanghai
- Focus on our core competencies, outsource the rest
 - More than 60% of cost is materials: supply base drives productivity
- Lean initiatives ensure maximum shop floor utilization

Supporting Worldwide Growth
Summary

• Why Turbocharge?
 - Optimizes engine performance
 - Fuel economy
 - Emissions reduction

• Why Now?
 - Legislative mandates
 - Worldwide diesel and gasoline market demand
 - Recent technological advances

• Why Honeywell?
 - Technology leader
 - Expertise, competitive advantage
 - Global presence and customer base

Enjoy the Ride!
Why Wait?

Here’s a look at the vehicles you’ll be driving!
Ford Falcon (Australia)

4.0L DOHC Gas Turbo

I6 24V DOHC

322 hp @ 5250 rpm
332 lb.-ft @ 2000 to 4500 rpm

6.2 s 0-62 mph
21 / 28 mpg (AUS)
Ford Falcon (Australia)

4.0L DOHC
Gas Turbo

I6 24V DOHC

322 hp @ 5250 rpm
332 lb.-ft @ 2000 to 4500 rpm
6.2 s 0-62 mph
21 / 28 mpg (AUS)
Ford Focus RS (England)

2.0L Gas Turbo
I4 16V DOHC

211 hp @ 5500 rpm
229 lb.-ft @ 3500 rpm

6.4s 0-60 mph
20/37 mpg (Euro)
Volkswagen Parati (Brazil)

1.0L Gas Turbo
I4 16V DOHC

110 hp @ 5500 rpm
114 hp @ 2000 rpm

9.8 s 0-62 mph
27/39 mpg (Brazilian)
Jeep Liberty I4T (Honeywell prototype)

2.4L Gas Turbo
I4 16V DOHC

<table>
<thead>
<tr>
<th>Performance</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horsepower</td>
<td>241 hp</td>
</tr>
<tr>
<td>Torque</td>
<td>243 lb.-ft</td>
</tr>
<tr>
<td>0-60 mph</td>
<td>9 s</td>
</tr>
<tr>
<td>MPG</td>
<td>18/24</td>
</tr>
</tbody>
</table>

Scottsdale, AZ Dec. 2004
Smart Roadster

700 cc Gas Turbo
L3 SOHC

80 hp @ 5250 rpm
81 lbs.-ft. @ 3000 rpm
10.9s 0-62 mph
37/53 mpg (Euro)
BMW 530d

3.0L Turbo Diesel

7.1 0-62 mph
25 / 43 mpg (Euro)

I6 24V DOHC

218 hp @ 4000 rpm

368 lb.-ft @ 1750 rpm
Volkswagen Passat TDI

2.5L Turbo Diesel
V6 24V DOHC

180 hp @ 4000 rpm
279 lb.-ft @ 1500 rpm

9.6 0-62 mph
19/37 mpg
Mercedes Benz E 320 CDI

3.2L Turbo Diesel

V6 24V DOHC

218 hp @ 4000 rpm

368 lb.-ft @ 1750 rpm

7.7 0-62 mph

27/37 mpg
Smart City-Coupe CDI

0.8L Turbo Diesel
I-3 6V SOHC

40 hp @ 4200 rpm
74 lb.-ft @ 1800-2800 rpm

15.4 0-62 mph
60 / 75 mpg (Euro)
VW Touareg

5.0L Turbo Diesel

V10 5.0l DOHC

- 313 hp @ 3750 rpm
- 552 lb.-ft @ 2000 rpm
- 6.2s 0-60 mph
- 17/23 mpg
Questions